

Applikationen & Tools

Answers for industry.

Cover

WinAC FileServer

Operator manual

V 1.2.3 March 2012

2
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Industry Automation and Drives Technologies Service & Support Portal
This article is taken from the Service Portal of Siemens AG, Industry Automation
and Drives Technologies. The following link takes you directly to the download
page of this document.
http://support.automation.siemens.com/WW/view/en/55422031

If you have any questions concerning this document please e-mail us to the
following address:
online-support.automation@siemens.com
applications.aud.koe.nrh.rd@siemens.com

http://support.automation.siemens.com/WW/view/en/55422031
mailto:online-support.automation@siemens.com
mailto:applications.aud.koe.nrh.rd@siemens.com

WinAC FileServer
V 1.2.3, Entry ID: 55422031 3

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

s

SIMATIC
WinAC FileServer

Operator manual

Automation Task
 1

Overview
 2

Driver supported
functionality

 3

Funtion Blocks
 4

Installation
 5

Use cases of application
 6

Error codes
 7

Reated Literature
 8

History
 9

 10

 11

 12

Warranty and Liability

4
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Warranty and Liability
Note The Application Examples are not binding and do not claim to be complete

regarding the circuits shown, equipping and any eventuality. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for ensuring that
the described products are used correctly. These application examples do not
relieve you of the responsibility to use safe practices in application, installation,
operation and maintenance. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time without prior notice.
If there are any deviations between the recommendations provided in these
application examples and other Siemens publications – e.g. Catalogs – the
contents of the other documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens Industry Sector.

Table of Contents

WinAC FileServer
V 1.2.3, Entry ID: 55422031 5

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Table of Contents
Warranty and Liability..4
1 Automation Task ..7

1.1 Overview...7
1.1 Needed knowledge..7
1.2 Required Hardware and Software Components8

2 Overview...9
2.1 Functional range..9
2.2 Version of the driver...10

3 Driver supported functionality...11
3.1 General overview...11
3.2 Auxiliary functions for file handling ...12
3.3 Storing information about data block’s structure12
3.4 Tool for creating configuration data block (Config DB Creator)15
3.4.1 Usage of ConfigDBCreator with Step7 Classic (V5.5).......................16
3.4.2 Using Step7 V11 (TIA-Portal)...17
3.5 Supported File Format ...20
3.5.1 Binary file ..20
3.5.2 CSV – Comma Separated Values..20
3.5.3 ASCII – American Standards Committee for Information Interchange22
3.5.4 XML - Extensible Markup Language ..23
3.5.5 INI – Windows initialization file...24
3.6 Supported Step7 data types...25
3.6.1 Basic types..25
3.6.2 Structured data types...26

4 WinAC function blocks (FB)...27
4.1 FBFileInit ...27
4.2 FBFileOpen ...29
4.2.1 Relationship between REQ, BUSY, DONE and ERROR29
4.3 FBFileWrite ...32
4.4 FBFileRead ...33
4.5 FBFileHandling..34
4.6 FBFileGetStat..35

5 Installation ..36
5.1 Quick-start...36
5.2 Installation WinAC driver on runtime system37
5.3 Installation WinAC driver on engineering system with Step7 classic .37
5.4 Installation WinAC driver on engineering system with Step7 V11 (TIA-

Portal) ...38
6 Use Cases of the Application...39

6.1 Provided Step7 Classic example project ..39
6.2 Provided TIA portal example project (V11)40
6.3 Process measure data block with CSV...41
6.4 Access network drives ...42

7 Error Codes ..43
7.1 Error codes of WinAC ODK..43
7.2 Special error codes of the WinAC File Server...................................45

8 Related Literature...50
8.1 Bibliography...50

Table of Contents

6
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

8.2 Internet Link Specifications ..50
9 History ..51

 1 Automation Task

WinAC FileServer
V 1.2.3, Entry ID: 55422031 7

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

1 Automation Task
1.1 Overview

Introduction
It is not possible to save or load files into data blocks. This functionality is provided
by the WinAC FileServer driver. Various file types are supported: Binary, ASCII,
XML, SCV and Windows INI file.

1.1 Needed knowledge

To understand this document the following knowledge needed:
 SIMATIC WinAC RTX 2010
 SIMATIC Manager STEP7 V5.5

 or
 STEP7 V11 (TIA Portal)

 1 Automation Task

8
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

1.2 Required Hardware and Software Components

The application was generated with the following components:

Hardware components
 Simatic Microbox IPC 427C (1,2 GHz, 4 GB RAM, 4 GB CF-Card)

with Windows XP embedded SP3

Standard software components
 SIMATIC WinAC RTX 2010
 SIMATIC Manager STEP 7 V5.5

Sample files and projects
The following list includes all files and projects that are used in this example.

Table 1-1 Included files

Component Note

Documentation \ WinAC-
FileServer_Doku_v11_DE.pdf
Documentation \ WinAC-
FileServer_Doc_v11_EN.pdf

This documentation in German and English

Driver \ WinAcFileServer.dll The WinAC driver
Driver \ setup.bat Setup batch for the driver
S7ClassicExample \ FileServer.zip Step7 example project including all WinAC

function blocks of the driver
S7V11-TIA-PortalExample Step7 example project including all WinAC

function blocks of the driver
ConfigDbCreator \ Tool for creating configuration data blocks

 2 Overview

WinAC FileServer
V 1.2.3, Entry ID: 55422031 9

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

2 Overview
2.1 Functional range

The WinAC FileServer provides functions to store and read data block in a
structured format. Several file types are supported (XML, ASCII, Binär, CSV, INI).
The driver provides the following functions:
 Access several files at same time
 Writing/Reading in structured format (XML, CSV, etc.)
 Continuous writing (e.g. measured values in “append” mode)
 File status (size, date, etc.)
 File handling (delete, copy, etc.)

Note The driver reads / writes data blocks as a whole by default

The format of the XML file is fixed. The driver gives the possibility to write and read
data blocks among other things in XML format. It is not possible to parse any user-
defined XML files.

 2 Overview

10
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

2.2 Version of the driver

Determine driver under Windows OS
The driver DLL is located in the system32 directory, e.g.
 C:\Windows\system32\WinAcFileServer.dll
You can identify the version of the driver RTDLL in the file properties (Windows
explorer right click properties)

Figure 2-1 Properties of the driver DLL

Check driver version in Step7 project
In the instance DB of FBFileInit the version of the DLL is stored, too:
 tOdkIf.dwDllVersion version of the driver DLL

 3 Driver supported functionality

WinAC FileServer
V 1.2.3, Entry ID: 55422031 11

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3 Driver supported functionality
3.1 General overview

The driver consists of two parts:
 The Step7 function blocks
 The driver DLL

Thus the driver DLL must be installed on the runtime system. The Step7 function
blocks are used in the Simatic Manager on the Engineering station.

To be able to read/write data blocks in structured format, the driver has to know
about the internal structure of the data block (data types, arrays etc.).
The needed information about the composition of the data block is stored in a
“config data block”. The advantage is: all needed information is part of the Step7
project. If the information would be stored in some kind of INI file, the WinAC
projecting would consist of two parts. The INI file has to be copied to the runtime
system.

Figure 3-1 Structure of the solution

The needed “config data block” can be created by the provided tool “Config DB
Creator”.

 3 Driver supported functionality

12
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Note A separate FB FILE_CLOSE is not needed.

After writing a file it is closed immediately.

If another data block has to be written to a different file, just call the FB
FBFileOpen again with modified parameters.

Note The reading and writing was developed for handling one file. E.g. a data of one
file must fit in one data block.

3.2 Auxiliary functions for file handling

The driver includes function blocks for file handling. They provide the following
functions:
 Delete files
 Rename files
 Check status (size, date)
 Copy files

3.3 Storing information about data block’s structure

The driver needs information about the internal build-up of the written / read data
block. Only with this information a structured file format is possible.
There are two possibilities:
 Some kind of INI file
 Separate config data block

The WinAC FileServer uses the solution with a separate config data block. Thus
the complete project is stored in the Simatic Mager project. Project download is
done by the Simatic Manager, only. No additional copying of some INI file is
needed.
This solution has a drawback: the size of the DB is limited by the number of
structure information stored in the config DB.

 !
Attention

The present version of the driver can handle maximum 4.000 items for
every file.

 3 Driver supported functionality

WinAC FileServer
V 1.2.3, Entry ID: 55422031 13

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

The Config data block
The config data block contains information needed for handling data in structured
format.
The principle build-up is shown below:

Table 3-1 Example of data block to read / write (STL source)

STRUCT
 Par_Kp INT
 Par_Tn INT
 Heater STRUCT
 Ht_Topt INT
 Ht_Trcp INT
 END_STRUCT
 Par_Ti INT
END_STRUCT

Table 3-2 Matching config data block (STL source)

// Header
CONFIG_DB_VERSION : INT := 1; //Version of ConfigDB
CSV_SEPERATOR : CHAR := ';'; //CSV-Seperator
WITH_HEADER : BOOL := TRUE; //Use header for files
RESERVE : ARRAY [1 .. 96] OF BYTE ;
// Type information
CFG_DATA_TYP_1 : BYTE := B#16#22; //INT
CFG_DATA_NAM_1 : STRING [6] := 'Par_Kp';
CFG_DATA_TYP_2 : BYTE := B#16#22; //INT
CFG_DATA_NAM_2 : STRING [6] := 'Par_Tn';
CFG_DATA_TYP_3 : BYTE := B#16#70; //STRUCT_START
CFG_DATA_NAM_3 : STRING [7] := 'Heater';
CFG_DATA_TYP_4 : BYTE := B#16#22; //INT
CFG_DATA_NAM_4 : STRING [7] := 'Ht_Topt';
CFG_DATA_TYP_5 : BYTE := B#16#22; //INT
CFG_DATA_NAM_5 : STRING [7] := 'hat_Trcp';
CFG_DATA_TYP_6 : BYTE := B#16#71; //STRUCT_END
CFG_DATA_NAM_6 : STRING [0] := ''; //Struct ends here
CFG_DATA_TYP_7 : BYTE := B#16#22; //INT
CFG_DATA_NAM_7 : STRING [6] := 'Par_Ki';
CFG_DATA_TYP_8 : BYTE := B#16#AA; //End of ConfigDB
CFG_DATA_NAM_8 : STRING [0] := '';

To store the variable names only the needed space is used for the SIMATIC
strings.

 3 Driver supported functionality

14
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Coding of Step7 data types
All available S7 data types have to be stored.
Additional sizes of Arrays or maximum length of strings have to be known. This
information is stored in the config DB, too.
For arrays the start index is stored because it can be different than 0

Table 3-3 Coding of S7 data types in config DB

HEX DEC Description
--
00h - 0d – not used
01h - 1d - Type BOOL
10h - 16d - reserve 1 byte
11h - 17d - Type BYTE
12h - 18d - Type CHAR
20h - 32d - reserve 2 byte
21h - 33d - Type WORD
22h - 34d - Type INT
23h - 35d - Type S5TIME
24h - 36d - Type DATE
40h - 64d - reserve 4 byte
41h - 65d - Type DWORD
42h - 66d - Type DINT
43h - 67d - Type REAL
44h - 68d - Type TIME
45h - 69d - Type TIME_OF_DAY
50h - 80d - Type STRING
51h - 81d - max. len. of string
60h - 96d - Type ARRAY
61h - 97d - start index of array
62h - 98d - length of array
63h - 99d - end of array
70h - 112d - Type STRUCT (start of struct)
71h - 113d - end of struct
72h - 114d - Type UDT (start of UDT)
73h - 115d - end of UDT
80h - 128d - reserve 8 bytes
81h - 129d - Type DATE_AND_TIME
AAh - 170d - 'END of DB'

 3 Driver supported functionality

WinAC FileServer
V 1.2.3, Entry ID: 55422031 15

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Config data block header
Some file related information is stored in the header of the config data block like
the separator for the CSV file.

Table 3-4 Parameters of config data block header

Parameter Typ Beschreibung

CONFIG_DB_VERSION INT Version of Config DBs *1)
WITH_HEADER BOOL Create Header in data file *2)
CSV_SEPERATOR CHAR Separator for CSV files
RESERVE reserved

 *1) The config data block version number is needed to guarantee a matching
between configuration an WinAC FileServer version. If in future versions more
information is stored in the header, it will be marked by a changed version number.

 *2) Creating a header is only used for CSV files.

3.4 Tool for creating configuration data block (Config DB
Creator)

This tool supports in creating a matching config data block. It creates a config data
block for a selected data block.

Note The "Config DB Creator" supports analyzing of global data blocks, only. It is not
possible to analyze instance DBs because the sources of such blocks does not
include the needed data type information.

The user selects the Step7 project, the folder and the data block. After that the tool
analyses the data block and generates the matching config data block.

 3 Driver supported functionality

16
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.4.1 Usage of ConfigDBCreator with Step7 Classic (V5.5)

Note The "Config DB Creator" needs an installed Simatic Manager V5.5 for operation.

Figure 3-2 GUI of the Config DB Creator

On the right side a log window is shown. It can be hidden by pressing ‘<<<’. With
the menu “View / Clear log” the log window can be cleared.
To change the Step7 target (project / folder / data block) the button ‘Select’ has to
be pressed.
The ‘Properties’ area contains some additional settings, like the CSV separator.
The setting “Use header” is used for CSV file type only! It the checkbox is
activated, a first line with the variable names is written. When reading a file
containing a header line this first line is skipped, because it contains the header
only.
By pressing ‘Create ConfigDB’ the tool generates the new data block in the
selected Step7 project.

 3 Driver supported functionality

WinAC FileServer
V 1.2.3, Entry ID: 55422031 17

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.4.2 Using Step7 V11 (TIA-Portal)

The TIA Portal V11 does not provide an application programming interface (API)
for external applications. Thus the „DB Config Creator“ can’t read and automatically
create new DBs in a Step7 Project. One has to use the Export/Import functionality
of DBs of the TIA Portal. The following steps are needed:

 Generate source for the data DB
 Generate sources for the used UDTs (if UDTs are used in the data DB).
 Use “Config DB Creator” to build the source for the Config DB
 Import the source of the Config DB in the TIA Portal

This approach is described by the following section.

Generate sources in TIA Portal
To create a config data block in the TIA-Portal, the source of the DB is needed.
This source is created by the following steps:
- Right mouse click on the data block
- Select „copy as text“ (Figure 3-3) in the context menu
- Open a text editor (e.g. Notepad) and paste the source text
- Save the file.

Figure 3-3 „copy as text“ in context menu

NOTE Beside the data block to read/write with WinAC FileServer, additional the
sources for used UDTs are needed, too.

 Store sources of UDTs in the same directory where the DBs was saved.

The file names must match following syntax:
 "<Name of UDT>_SRC_AWL".

 3 Driver supported functionality

18
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Analyzing and creating of config DB with “Config DB Creator”
- Start the ConfigDB Creator and click on the tab „TIA Portal“.
- Select the file in the text field “DB Source File“.
- Define the path for storing the “config DB”
- Assign a number for the config DB.
- Click on „Create ConfigDB“.

Figure 3-4 „WinAC ConfigDB Creator“ GUI - TIA Portal

Import source of “Config DB” into TIA portal project
- In the folder „external source“ you can find the submenu „add external files".

Double clicking on the item will open a new dialog. In this dialog you can select
the text file.

 3 Driver supported functionality

WinAC FileServer
V 1.2.3, Entry ID: 55422031 19

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-4 Projectview in the TIA Portal („add external files“)

- Now you see the external source in the folder “external source files”.
- Right click on the file opens the submenu.
- Clicking on „generate block“ opens a new dialog showing the actual state.

Figure 3-5 „generate block“ submenu

- After generating the data block you find the block in the folder “Program
blocks”

NOTE If the external source of the Config DB is changed, a new manually import is
needed in the TIA Portal. An updated external source file is not automatically
updated in the TIA portal!

 3 Driver supported functionality

20
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.5 Supported File Format

3.5.1 Binary file

Write: YES
Append mode: NO
Read: YES
File Header: NO
Repeat Counter: NO *1)

This file format is the right solution, if a minimum space is required or if the internal
data should be hidden.
If a file is read into a data block, it has to be guaranteed the file was generated
from a data block with exact same structure.

*1) A data block is written complete to the file or read complete from the file. That’s
why a repeat counter for multiple read/write operations makes no sense.

3.5.2 CSV – Comma Separated Values

Write: YES
Append mode: YES
Read: YES (not continuously data)
File Header: YES (parameter) *2)
Repeat Counter: YES *3)

When using CSV the data is stored “flat”, i.e. information about arrays or structures
inside the data block are lost.

Some parameters are specific for CSV files:
 Separator (tabulator, space, comma, etc.)
 Header line with variable’s names

NOTE The separator character can be defined by the user. Pay attention the used
character is not contained in the user data.

*2) Function of “with header line”
If the property “with header line” is activated, it causes the following:
 When a file is written, a first header line with all variable names is written

before the data.
 When a file is read, the first line is skipped, because it should include the

header only and no data.

 3 Driver supported functionality

WinAC FileServer
V 1.2.3, Entry ID: 55422031 21

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Table 3-5 Example for CSV file with header

Par_Kp; Par_Tn; Par_Ti
1; 3.4; 7

Table 3-6 Example for CSV file without header

1; 3.4; 7

*3) Repeat Counter / Multiple read/write operations
In some applications e.g. some measure data is collected in one data block (e.g.
time, value 1, value 2, time, value 1, value 2). The goal is to create a CSV file like
this:

Table 3-7 Example for CSV file multiple read/write (usage of repeat counter)

time; value 1; value 2
TOD#10:23:29.123; 3.4; 7.7
TOD#10:24:31.123; 3.6; 8.6
TOD#10:25:28.123; 3.7; 9.8

You could create a file like this with multiple call of FB WRITE_FILE with APPEND
flag is set.
But if all data is stored in one data block it is more effective to do it with one call.
When using the repeat-counter you can write all lines with one call of FB
WRITE_FILE. For the example above the repeat-counter must have the value of 3.

The ‘repeat-counter’ can be used for reading, too.

Note When the ‘repeat-counter’ is used, keep in mind the data must fit in one data
block

 3 Driver supported functionality

22
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.5.3 ASCII – American Standards Committee for Information Interchange

Write: YES
Append mode: YES
Read: YES (not continuously data)
File Header: NO
Repeat Counter: NO

When using ASCII a header (line) is not needed because the variable’s name is
written in front of every value.

Table 3-8 Example for ASCII file in append mode

Par_Kp = 1
Par_Tn = 3.4
Par_Ti = 7

Par_Kp = 2
Par_Tn = 3.6
Par_Ti = 9

Table 3-9 Example for ASCII file with array of struct

StructArray[1].Flag21=FALSE
StructArray[1].Flag22=FALSE
StructArray[2].Flag21=FALSE
StructArray[2].Flag22=FALSE

 3 Driver supported functionality

WinAC FileServer
V 1.2.3, Entry ID: 55422031 23

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.5.4 XML - Extensible Markup Language

Write: YES
Append mode: YES
Read: YES (not continuously data)
File Header: NO
Repeat Counter: NO

With file type XML the data block can be written into a XML file including all
structure and type information.
The format of the XML file is fixed. It is not possible to parse any user-defined XML
files.

The following example shows an example of a data block including a array and a
structure.

Table 3-10 Example for XML file

<?xml version="1.0"?>
<!-- generated by WinAC's file server, 25.03.2010 -->
<winac_data>
 <element name="Par_Kp" Type="INT" value="12"/>
 <element name="Par_Tn" Type="INT" value="24"/>
 <element name="Heater" Type="STRUCT">
 <element name="Ht_Topt" Type="INT" value="56"/>
 <element name="Ht_Trcp" Type="INT" value="78"/ >
 </element>
 <element name="Par_Ti" Type="INT" value="91"/>
 <array name="RefPoints Type="INT">
 <arrayitem index="1" value="3"/>
 <arrayitem index="2" value="8"/>
 </array>
 <array name="StructArray" type="STRUCT">
 <arrayitem index="1">
 <element name="Flag21" type="BOOL" value="FALSE"/>
 <element name="Flag22" type="BOOL" value="true"/>
 </arrayitem>
 <arrayitem index="2">
 <element name="Flag21" type="BOOL" value="FALSE"/>
 <element name="Flag22" type="BOOL" value="true"/>
 </arrayitem>
 </array>
</winac_data>

When the XML file is created, the creation date is automatically added in the
header area (see example above).

Note The structure of the XML file is fixed (see example). It is not possible to read a
XML file with any XML format.

 3 Driver supported functionality

24
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.5.5 INI – Windows initialization file

Write: YES
Append mode: NO
Read: YES
File Header: NO
Repeat Counter: NO

Note When using INI files, a specific structure of the data block is needed.

This file type is special: it requires a specific structure of the data block. Only in this
way it is possible to map a data block to a INI file and vice versa map a INI file to a
data block.

Table 3-11 Example for Windows INI file

[Parameter]
KP=6
TN=5.3
[HMI]
NUTZER=PAUL
LEVEL=5

Table 3-12 Matching data block to INI file above

STRUCT

 Parameter : STRUCT
 KP : INT := 6;
 TN : REAL := 5.300000e+000;
 END_STRUCT ;

 HMI : STRUCT
 Nutzer : STRING [254] := 'Paul';
 Level : INT := 5;
 END_STRUCT ;

END_STRUCT ;

I.e. the sections of the INI file are represented by STRUCTs (or UDTs) in the data
block. Nested structures are not supported.
If an INI file is written all information from the data block is inserted or updated in
the INI file. If there is additional information in the INI file, it stays untouched.
If an INI file is read only the needed information is retrieved. Any additional
information in the INI file is ignored.

 3 Driver supported functionality

WinAC FileServer
V 1.2.3, Entry ID: 55422031 25

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.6 Supported Step7 data types

3.6.1 Basic types

All Step7 data types are supported. The WinAC FileServer has to write and read
the data as strings (except for binary files).
The following table shows the supported Step7 data types.

Table 3-13 Formatting of supported Step7 data types

Data type Formats
WRITE

Valid formats
READ

BOOL TRUE / FALSE true false TRUE FALSE
0 1

BYTE B#16#AB B#16#AB
0xAB

CHAR a ' ' (Leerzeichen) – '€’ (EUR)
WORD W#16#ABCD W#16#ABCD

0xABCD
DWORD DW#16#ABCDEF01 DW#16#ABCDEF01

0xABCDEF01
INT 2 2
DINT L#83 L#83

83
REAL 1.235789e+000 0.03

5.000000e+001
STRING abcde abcde
S5TIME *1) S5T#1M39S900MS S5T#1M39S900MS

1M39S900MS
TIME T#4d20h31m23s647ms T#4d20h31m23s647ms

4d20h31m23s647ms
TIME_OF_DAY TOD#12:59:59.999 TOD#12:59:59.999

12:59:59.999
DATE D#1990-02-01 D#1990-01-01

1990-01-01
DATE_AND_TIME DT#10-9-29-10:54:21.123 DT#10-9-29-10:54:21.123

10-9-29-10:54:21.123

Note The data types ANY and POINTER are not supported!

*1) Depending on the value of the time the data type S5TIME internally utilizes
different time bases: 10ms 100ms 1s 10s. Portions smaller than the used time
base are lost.

 3 Driver supported functionality

26
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.6.2 Structured data types

STRUCT and UDTs are supported.
UDT is processed like STRUCT. In the XML file is not difference between using a
STRUCT or an UDT in the data block.
Array inside arrays is supported.
Multi-dimensional arrays are NOT supported!

 4 WinAC function blocks (FB)

WinAC FileServer
V 1.2.3, Entry ID: 55422031 27

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

4 WinAC function blocks (FB)
The WinAC FileServer provides a number of function blocks for access all
functionality. The numbers of the function block can be changed by the user.

FB801 – FBFileInit
FB802 – FBFileOpen
FB803 – FBFileRead
FB803 – FBFileWrite
FB805 – FBFileHandling
FB806 – FBFileGetStat

Note The driver function blocks are implemented in SCL (source included). For the
usage of the WinAC FileServer driver is SCL not needed!

4.1 FBFileInit

This block initializes the WinAC FileServer. It has to be called one-time before any
other call of FileServer function blocks.

Table 4-1 Parameter of FBs FBFileInit

Parameter In/
Out

Typ Description

ERROR Out Bool Error
STATUS Out WORD Status information
ODK_REF Out WORD Reference to driver *1)

Note *1) The value ODK_REF hast to provided to all other function blocks of the
FileServer.

Additional information in instance DB of FBFileInit
Additional to the output parameters some information is stored in the instance data
block of the function block:

 4 WinAC function blocks (FB)

28
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Table 4-2 Information in instance data block of FBFileInit

Name In/
Out

Description

CIF.DLL_VERSION In Version of driver DLL

Coding of DLL version
The DLL version is coded hexadecimal. The last sign of the DWORD is used for
mark Debug and Release version:
 D – Debug-Version
 A – Release-Version

Figure 4-1 Examples for DLL versions in the instance DB

"iDB_FILE_INIT".iOdkIf.dwDllVersion HEX DW#16#0001000D

 \ /|

 \/ +- Debug

 +---- V 1.0.0.0

"iDB_FILE_INIT".iOdkIf.dwDllVersion HEX DW#16#0001100A

 \ /|

 \/ +- Release

 +---- V 1.1.0.0

Note The data in the instance data block is valid after the first call of INIT function
block!

 4 WinAC function blocks (FB)

WinAC FileServer
V 1.2.3, Entry ID: 55422031 29

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

4.2 FBFileOpen

This block opens a file. The structure information of the data block to read/write is
provided
The function block works asynchronously. A rising edge of the REQ input starts the
processing, a signaled DONE shows the end of processing.
The parameter ID is used for identifying a specific file. Up to 32 files are supported
at same time.

Note If a specific ID should be used for a different file, the FBFileOpen has to be
called witch changed parameters.

Table 4-3 Parameter of FBFileOpen

Parameter In/
Out

Typ Description

ODK_REF In WORD Reference to the driver (see FBFileInit)
ID In INT File identifier 0..31
FILENAME In STRING File name (incl. Path)
FORMAT In BYTE File format

1 - BIN, 2 - CSV, 3 - ASCII, 4 - XML,
5 – INI

CFG_DB In ANY ANY-Pointer to data block with structural
information („Config DB“) *1)

RESET In BOOL Reset internal variables (has to be se tone
time before first usage)

APPEND In BOOL True – append mode
False – overwrite mode

REQ In BOOL Rising edge opens file
BUSY Out BOOL Command is running
DONE Out BOOL Command finished without error
ERROR Out BOOL Error
STATUS Out WORD Status information

*1) When using file type “binary” the parameter CFG_DB can stay empty because
no configuration information is needed for binary.

4.2.1 Relationship between REQ, BUSY, DONE and ERROR

A rising edge of REQ starts the execution of the command. During the execution
the BUSY flag is high. After finishing the command either DONE or ERROR
becomes high (for minimum one FB call). If REQ is reset also DONE or ERROR
respectively fall to low in the next call.
The following figures show the timing behaviour:

 4 WinAC function blocks (FB)

30
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 4-2 Time chart: REQ high, processing without error

Figure 4-3 Time chart: REQ high, processing with error

 4 WinAC function blocks (FB)

WinAC FileServer
V 1.2.3, Entry ID: 55422031 31

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 4-4 Time chart: REQ short pulse, processing without error

Figure 4-5 Time chart: REQ short pulse, processing with error

 4 WinAC function blocks (FB)

32
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

4.3 FBFileWrite

This block writes data to a file. An ANY pointer to the data block with the data is
provided. The internal structure of the data block is known because of the call of
FBFileOpen call before.
The function block works asynchronously. A rising edge of the REQ input starts the
processing, a signaled DONE shows the end of processing.
The parameter ID is used for identifying a specific file. Up to 32 files are supported
at same time.

Table 4-4 Parameter of FBFileWrite

Parameter In/
Out

Typ Description

ODK_REF In WORD Reference to the driver (see FBFileInit)
ID In INT File identifier 0..31
REPEAT_CNT In INT Repeat counter: How often contains the data block

(DATA_DB) the structure defined in CFG_DB
(FBFileOpen)

DATA_DB In ANY ANY pointer to data block to be written
RESET In BOOL Reset internal variables (has to be se tone time

before first usage)
REQ In BOOL Rising edge opens file
BUSY Out BOOL Command is running
DONE Out BOOL Command finished without error
ERROR Out BOOL Error
STATUS Out WORD Status information

The time chart for REQ, BUSY, DONE and ERROR is described in chapter 4.2.1
on page 29.

NOTICE The path where the file should be written must exist before calling the
function FBFileWrite.

 4 WinAC function blocks (FB)

WinAC FileServer
V 1.2.3, Entry ID: 55422031 33

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

4.4 FBFileRead

This block reads data from a file into a data block. An ANY pointer to the data block
is provided. The internal structure of the data block is known because of the call of
FBFileOpen call before.
The function block works asynchronously. A rising edge of the REQ input starts the
processing, a signaled DONE shows the end of processing.
The parameter ID is used for identifying a specific file. Up to 32 files are supported
at same time.

Table 4-5 Parameter of FBFileRead

Parameter In/
Out

Typ Description

ODK_REF In WORD Reference to the driver (see FBFileInit)
ID In INT File identifier 0..31
REPEAT_CNT In INT Repeat counter: How often contains the data block

(DATA_DB) the structure defined in CFG_DB
(FBFileOpen)

DATA_DB In ANY ANY pointer to data block to be read
RESET In BOOL Reset internal variables (has to be se tone time

before first usage)
REQ In BOOL Rising edge opens file
BUSY Out BOOL Command is running
DONE Out BOOL Command finished without error
ERROR Out BOOL Error
STATUS Out WORD Status information

The time chart for REQ, BUSY, DONE and ERROR is described in chapter 4.2.1
on page 29.

 4 WinAC function blocks (FB)

34
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

4.5 FBFileHandling

With this function block the following functions are provided:
 Copy file
 Rename file
 Delete file
 Move file

Table 4-6 Parameter of FBFileHandling

Parameter In/
Out

Typ Description

ODK_REF In WORD Reference to the driver (see FBFileInit)
FILE_SRC In String Full path / filename before
FILE_DST In String Full path / filename after
RESET In Bool Reset all internal variables
RENAME In Bool 1 – rename file
MOVE In Bool 1 – move file
COYP In Bool 1 – copy file
DELETESRC In Bool 1 – Delete source file
OVERWRITE In Bool 1 –Overwrite if exists (only valid for COPY)
REQ In BOOL Rising edge opens file
BUSY Out BOOL Command is running
DONE Out BOOL Command finished without error
ERROR Out BOOL Error
STATUS Out WORD Status information

The time chart for REQ, BUSY, DONE and ERROR is described in chapter 4.2.1
on page 29.

 4 WinAC function blocks (FB)

WinAC FileServer
V 1.2.3, Entry ID: 55422031 35

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

4.6 FBFileGetStat

With this function block you can get file status (size, date, etc.).

Table 4-7 Parameter of FBFileGetStat

Parameter In/
Out

Typ Description

ODK_REF In WORD Reference to the driver (see FBFileInit)
FILE_NAME In String Full path / filename
RESET In Bool Reset all internal variables
REQ In BOOL Rising edge opens file
BUSY Out BOOL Command is running
DONE Out BOOL Command finished without error
ERROR Out BOOL Error
STATUS Out WORD Status information
DISC_SPACE Out Dword Free disk space
FILE_SIZE Out Dword File size
FILE_TIME Out Date_and_

Time
Last change of file

FILE_ATTRIB Out Dword File attributes
Bit 0 - READONLY 0x00000001
Bit 1 - HIDDEN 0x00000002
Bit 2 - SYSTEM 0x00000004
Bit 4 - DIRECTORY 0x00000010
Bit 5 - ARCHIVE 0x00000020
Bit 6 - ENCRYPTED 0x00000040
Bit 7 - NORMAL 0x00000080
Bit 8 - TEMPORARY 0x00000100
Bit 9 - SPARSE_FILE 0x00000200
Bit 10 - REPARSE_POINT 0x00000400
Bit 11 - COMPRESSED 0x00000800
Bit 12 - OFFLINE 0x00001000

The time chart for REQ, BUSY, DONE and ERROR is described in chapter 4.2.1
on page 29.

 5 Installation

36
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5 Installation
5.1 Quick-start

Run-time system
 Install the driver DLL on the run-time system with the setup.bat

Engineering system Step7 V5.5

 Retrive and open the archived Step7 project with the Simatic Manager

 Copy all needed driver function blocks in your project (incl. SFBs)

 Run the ConfigDBCreator.exe for creating the needed configuration DB

 Call FBFileInit once before using any other FB from the driver

 Call FBFileOpen with right file name

(positive edge opens file)

 Call FBFileRead / FBFileWrite for reading / writing

(positive edge triggers function)

Engineering system TIA Portal V11

 Retrive and open the archived Step7 project with the Simatic Manager

 Copy all needed driver function blocks in your project

Used SIMATIC PLC must be an WinAC. In other case the driver’s function
blocks are marked as faulty.

 Run the ConfigDBCreator.exe for creating the needed configuration DB

(manual import / export of sources is needed)

 Call FBFileInit once before using any other FB from the driver

 Call FBFileOpen with right file name

(positive edge opens file)

 Call FBFileRead / FBFileWrite for reading / writing

(positive edge triggers function)

 5 Installation

WinAC FileServer
V 1.2.3, Entry ID: 55422031 37

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.2 Installation WinAC driver on runtime system

The installation of the WinAC driver is limited to the copying of the driver DLL to the
system32 directory. For that purpose there is a batch file setup.bat.

Installation under Windows XP (embedded)
Under Windows XP one can start the setup.bat. This works from USB stick, too.

Installation under Windows 7
For copying a file to system32 Administrator privileges are needed. Thus the
setup.bat has to be started as Administrator (right click – Run as Administrator).
The Windows 7 UAC has to be confirmed with “Yes”.
This works from USB stick, too.

5.3 Installation WinAC driver on engineering system with
Step7 classic

On the engineering system these components are needed:
 Documentation
 Tool “ConfigDBCreator”
 Example project Step7 Classic (V5.5)

The Step7 demo project includes all needed function blocks for the user
application.
The tool “Config DB Creator” does not need any installation. Just copy the directory
to the engineering station. The needed Visual Basic runtime files should exist on a
Windows installation (Windows XP or higher).

There is no installation needed of the WinAC FileServer driver (setup.bat) on the
engineering station.

 5 Installation

38
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.4 Installation WinAC driver on engineering system with
Step7 V11 (TIA-Portal)

Platform requirements:
 This documentation
 Step7 V11 (TIA-Portal) demo application
 Tool „WinAC ConfigDB Creator“

The S7 demo application contains the program blocks. You can copy the driver
function blocks to your application

For the „WinAC ConfigDB Creator“ is no installation required.
Only the Visual Basic 6 Runtime Library and a Microsoft Windows XP or higher
Operating System is required.

An installation of the WinAC driver (setup.bat) is not needed on the run-time
system.

WinAC - CPU in the project
If the driver function blocks are copied to a project without a WinAC CPU the FBs
are marked with an error, because the used SFBs are not supported by other PLCs
like WinAC.

Copy the elements (blocks, constants and tables)
To use the WinAC FileServer in a TIA Portal project the following components are
needed:
- The driver blocks (folder “Program blocks”)
- Constants (folder “PLC-Variables“ WinAC_FileServer_Constants),
A second instance of the TIA Portal is needed for copying. Open the target project
in the second instance and copy the function blocks (e.g. “drag and drop”) from the
demo project (WinAC FileServer).

Compiling blocks
In some cases the TIA portal may mark the driver function blocks redbecause
some functions of the WinAC ODK (EXEC_COM and CREA_COM) are not
recognized. If this happens you have to compile the function blocks again to
update the function block’s interfaces.

 6 Use Cases of the Application

WinAC FileServer
V 1.2.3, Entry ID: 55422031 39

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

6 Use Cases of the Application
6.1 Provided Step7 Classic example project

The driver package includes a Step7 Classic (V5.5) example project. The example
application is realized in FBD (Function Block Diagram). Target of the example is
the demonstration of all functions of the WinAC FileServer driver. The different
functionalities are controlled by some variable tables.

OB100 Complete Restart
In the beginning the bFirstRun flag is set. It is used for initialization of all FileServer
function blocks. Additional internal request flags are reset.
In start up phase the driver is loaded (FBFileInit).

OB1 CYCL_EXC
The OB1 contains all the function blocks of the FileServer driver. They can be
activated by separate request flags (see variable tables).
At the end the bFirstRun flag is reset.

FB801 – FB806 –FileServer FBs
These are the function blocks of the WinAC FileServer driver.

DB801 – DB806 –FileServer instance data blocks
These are the instance data blocks of the FBs of the WinAC FileServer driver.

DB1000 DBGlob
This data block contains various variables used by this demo project. Thus the
example does not need any flags.

DB2000 / 2001, DB 2002 / 2003, DB 2004 / 2005, DB 2006 / 2007, DB 2008 / 2009
These is a collection of data blocks to store plus the matching configuration data
blocks.

VAT_... – Variable tables
The variable tables are prepared to test specific functionality of the FileServer
driver.
The table VAT_FILE_SERVER controls the functionality of the driver. The
remaining tables show content of the various data blocks to store.

 6 Use Cases of the Application

40
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

6.2 Provided TIA portal example project (V11)

The driver package includes a TIA Poral V11 example project. The example
application is realized in FBD (Function Block Diagram). Target of the example is
the demonstration of all functions of the WinAC FileServer driver. The different
functionalities are controlled by some variable tables.

The organization of the TIA portal corresponds to the Step7 classic example.
Please refer the documentation of the classic example (see chapter 6.1 “Provided
Step7 Classic example project” on page 39).

 6 Use Cases of the Application

WinAC FileServer
V 1.2.3, Entry ID: 55422031 41

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

6.3 Process measure data block with CSV

A data block stores uniform data (e.g. measure data: timestamp, value 1, value 2,
etc.). This data block should be written in a CSV file or read from CSV file.
The data block may have the following structure:

Table 6-1 Example data block with measure values

STRUCT
 data : ARRAY[0.999] OF
 STRUCT
 timestamp : TIME_OF_DAY ;
 voltage : REAL ;
 current : REAL ;
 current : REAL ;
 END_STRUCT ;
END_STRUCT ;

To fulfill the requirement there are different approaches:
 Write whole data block with one function call “as a whole”
 Write data block line by line
 Write whole data block with the repeat counter

Write whole data block with one function call “as a whole”
One can create a Config-DB with the structural information for the whole measure
value data block (tool ConfigDBCreator).
With one call of FBFileOpen and FBFileWrite the data block can be written.
Drawback: The configuration data block will get big size. It may contain more items
the WinAC FileServer supports.

Write data block line by line
In this case the Config-DB describes the measure data, only.
After opening with FBFileOpen with APPEND flag set, the FBFileWrite must be
called many times – one time for every measure value. The input parameter
DATA_DB (ANY) must point to the next measure value.
Drawback: Because of the many single calls of FBFileWrite the writing will cost
some time.

Tip To create the Config-DB for the measure data only with the tool
ConfigDBCreator one can reduce the size of the array to 1 temporaly.

Write whole data block with the repeat counter
Also in this case the Config-DB describes the measure data, only.

 6 Use Cases of the Application

42
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Now the FBFileWrite is called with REPEAT_CNT = 1000. Thus this single call
processes the whole data block containing many measure values.

6.4 Access network drives

The WinAC including their extensions like “WinAC FileServer” runs as user
SYSTEM, i.e. system process. A system process runs with “Zero Credentials”, i.e.
it is allowed only to access local resources.
By default a WinAC driver cannot access any network drives. But it is possible to
create a so called “null session share” which can be assessed without login name
and password.

Note The following settings have to be done on the remote PC. On this PC the
directory is located for storing WinAC data.

 Create directory and share

e.g. “WinACData”; full access for user “Everyone”
 Group Policy Editor (start e.g. by gpedit.msc)
 Computer configuration \ Windows settings \ Security Settings \ Local settings \

safety options
+ “Network access: shares that can be accessed anonymously”:
 add “WinACData” here
+ “Network access: Let everyone permissions apply to anonymous
 users”
 activate this

Note The path in the Step7 project for FBFileOpen must be provided in UNC notation.

 7 Error Codes

WinAC FileServer
V 1.2.3, Entry ID: 55422031 43

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

7 Error Codes
The WinAC FileServer can provide different classes of error messages:
- Code in the FB-output STATUS according to WinAC-ODK (see chapter 8.1 in

this document)
- Special error codes of the FileServer (see chapter 8.2 on page 45 in this

document)

7.1 Error codes of WinAC ODK

The driver had been developed with the WinAC ODK (Open Development Kit). The
ODK can generate error codes, which are returned from the STATUS of the FBs.

Table 7-1 WinAC ODK error messages

ODK
Code
(HEX)

Description

0 Success
8001 An exception occurred.
8002 Input: the ANY pointer is invalid.
8003 Input: the ANY pointer range is invalid.
8004 Output: the ANY pointer is invalid.
8005 Output: the ANY pointer range is invalid.
8006 More bytes were written into the output buffer by the extension object than

were allocated.
8007 ODK system has not been initialized: no previous call to SFB65001

(CREA_COM).
8008 The supplied handle value does not correspond to a valid extension object.
8009 More bytes were written into the input buffer by the extension object than

were allocated.
807F An internal error occurred.
80C3 Maximum number (32) of parallel jobs/instances exceeded.
8102 The call to CLSIDFromProgID failed.
8103 The call to CoInitializeEx failed.
8104 The call to CoCreateInstance failed.
8105 The library failed to load.
8106 A Windows response timeout occurred.
8107 Controller is in an invalid state for scheduling an OB.
8108 Schedule information for OB is invalid.
8109 Instance ID for SFB65001 call is invalid.
810A Controller could not load proxy DLL.
810B The WinAC controller could not create or initialize shared memory

area.
810C Attempt to access unavailable option ocurred.
8201 The Execute command index could not be found
8250 No more available positions in the job list

 7 Error Codes

44
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

ODK
Code
(HEX)

Description

8252 The count is invalid
8253 A data type of an item in the list is invalid
8254 The count specified is invalid
8255 A memory area of an item in the list is invalid
8256 A DB number of an item in the list is invalid
8257 A bit number of an item in the list is invalid
8258 A pBuff of an item in the list is invalid
8259 A data quantity is invalid
825A The area offset parameter is invalid for this type
825B The frequency value is invalid
825C The callback pointer is invalid
825D The job ID pointer is invalid
825E The job ID is invalid
825F Job could not be completed because address is incorrect
8260 Job could not be completed because of protection level
8261 Job could not be completed because of hardware issues
8301 Invalid Thread Execution Priority
8401 Invalid Asynchronous Event
8402 Asynchronous Processor Queue is empty
8403 Asynchronous Processor Queue is full

 7 Error Codes

WinAC FileServer
V 1.2.3, Entry ID: 55422031 45

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

7.2 Special error codes of the WinAC File Server

Among the general error bit of the driver FBs there is a special error code in the
value of STATUS to describe the reason of the problem.

Note Several error reasons provide additional information in the instance DB of the
function block (tOdkIf.dwErrInfo1 … 4)

Table 7-2 Error codes of WinAC FileServer
0 - no error

Interface to WinAC
0x8501 - error using ODK_Read.. function
0x8502 - error using ODK_Write.. function
0x8503 - no config DB given
0x8504 - no config DB given
0x8505 - no read DB given
0x8506 - no read DB given
0x8507 - no read DB given
0x8508 - no read DB given
0x850A - no write DB given
0x850B - no write DB given

0x8510 - false version of Step7 function block
0x8511 - false ID for file
0x8512 - not supported file format

State errors
0x8520 - no successful init called before
0x8521 - update config is active
0x8522 - read file is active, update config not allowed
0x8523 - write file is active, update config not allowed
0x8524 - unknown internal state (no 'file open' called before?)
0x8525 - false internal state after changing config
0x8526 - false internal state after reading file
0x8527 - false internal state after writing file

Analysing the configuration
0x8531 - no file defined yet
0x8532 - config DB version not supported
0x8533 - to many items for internal storage
0x8534 - no start index of array found
0x8535 - no start index of array found
0x8536 - append mode not allowed for BIN files
0x8537 - append mode not allowed for INI files
0x8538 - no strlen for string found
0x8539 - max. strlen to small (0 or negative)
0x853a - max. strlen to long (> 254)
0x853b - unsupported data type found
0x853c - internal error - exception catched

 7 Error Codes

46
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Errors writing file
0x8540 - no valid repeat counter for writing
0x8541 - no file handler (file format) assigned to this file ID
0x8542 - error open file for writing
0x8543 - error writing to file
0x8544 - internal error - exception catched

0x8551 - cannot write data outside of struct (needed for section name)
0x8552 - nested structs not allowed for INI files
0x8553 - error writing parameter to INI file

0x8561 - unexpected data type when writing XML writing basic type
0x8562 - unexpected data type when writing XML writing array
0x8563 - unexpected data type when writing XML writing struct

0x8564 - error seeking file from end
0x8565 - error file get pos
0x8565 - error file fgetc

0x8571 - error writing BIN file

0x8581 - this S7 data type is not supported for writing
0x8582 - error writing BOOL - reading from WinAC
0x8583 - error writing BYTE - reading from WinAC
0x8584 - error writing CHAR - reading from WinAC
0x8585 - error writing CHAR - range of character
0x8586 - error writing WORD - reading from WinAC
0x8587 - error writing DWORD - reading from WinAC
0x8588 - error writing INT - reading from WinAC
0x8589 - error writing DINT - reading from WinAC
0x858a - error writing REAL - reading from WinAC
0x858b - error writing S5TIME - reading from WinAC
0x858c - error writing S5TIME - problem with time base
0x858d - error writing STRING - internal buffer to small
0x858e - error writing STRING - reading from WinAC
0x858f - error writing TIME - reading from WinAC
0x8590 - error writing TIME_OF_DAY - reading from WinAC
0x8591 - error writing DATE - reading from WinAC
0x8592 - error writing DATE - range error
0x8593 - error writing DATE_AND_TIME - reading from WinAC

Error reading a file
0x8600 - no valid repeat counter for reading
0x8601 - error open file for reading
0x8602 - internal error - exception catched

0x8611 - error getting file status
0x8612 - error file size does not match DB size
0x8613 - error reading file binary

0x8621 - no header line found in CSV file
0x8622 - end of line before all values read
0x8623 - end of file before all values read
0x8624 - value string too long
0x8625 - value string too short (CSV file to short?)

0x8631 - given INI parameter/section not found

 7 Error Codes

WinAC FileServer
V 1.2.3, Entry ID: 55422031 47

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

0x8641 - a line in ASCII file is too long
0x8642 - line without '='
0x8643 - unknown item found in ASCII file
0x8644 - got invalid index for item

0x8651 - unknown item found in XML file
0x8652 - got invalid index for item
0x8653 - empty parent

0x8700 - base address for XML read errors
0x8701 - XML read - Error
0x8702 - XML read - Failed to open file
0x8703 - XML read - Memory allocation failed.
0x8704 - XML read - Error parsing Element.
0x8705 - XML read - Failed to read Element name
0x8706 - XML read - Error reading Element value.
0x8707 - XML read - Error reading Attributes.
0x8708 - XML read - Error empty tag.
0x8709 - XML read - Error reading end tag.
0x870A - XML read - Error parsing Unknown.
0x870B - XML read - Error parsing Comment.
0x870C - XML read - Error parsing Declaration.
0x870D - XML read - Error document empty.
0x870E - XML read - Error null (0) or unexpected EOF found in input stream.
0x870F - XML read - Error parsing CDATA.
0x8710 - XML read - Error when XmlDocument added to document,
 because XmlDocument can only be at the root.
0x8711 - XML read - Error

Error reading file - parsing value strings
0x8801 - this type is not supported for reading
0x8802 - error reading data type 'BOOL' - writing 'true' to WinAC
0x8803 - error reading data type 'BOOL' - writing 'false' to WinAC
0x8804 - error reading data type 'BOOL' - unknown value
0x8805 - error reading data type 'BYTE' - writing to WinAC
0x8806 - error reading data type 'CHAR' - got no chacter
0x8807 - error reading data type 'CHAR' - got string with lenght > 1
0x8808 - error reading data type 'CHAR' - out of range
0x8809 - error reading data type 'CHAR' - writing to WinAC
0x880a - error reading data type 'WORD' - writing to WinAC
0x880b - error reading data type 'DWORD' - writing to WinAC
0x880c - error reading data type 'INT' - writing to WinAC
0x880d - error reading data type 'INT' - writing to WinAC
0x880e - error reading data type 'REAL' - writing to WinAC
0x880f - error reading data type 'STRING'
0x8810 - error converting hex value (false prefix?)

0x8812 - error reading data type 'BYTE' - range error
0x8814 - error reading data type 'WORD' - range error
0x8816 - error reading data type 'INT' - range error: value to big
0x8817 - error reading data type 'INT' - range error: value to small

0x8821 - error reading S5TIME - writing value to WinAC
0x8822 - error reading S5TIME - false prefix ('S5T#')
0x8823 - error reading S5TIME - [MS] resolution (divisible by 10)
0x8824 - error reading S5TIME - [MS] value

 7 Error Codes

48
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

0x8825 - error reading S5TIME - [S] value
0x8826 - error reading S5TIME - [MIN] value
0x8827 - error reading S5TIME - [H] value
0x8828 - error reading S5TIME - value out of range
0x8829 - error reading S5TIME - value out of range
0x882a - error reading S5TIME - base out of range

0x8831 - error reading STRING - invalid pointer to string
0x8832 - error reading STRING - error reading string len
0x8833 - error reading STRING - string is too large for the STEP 7 string
0x8834 - error reading STRING - string is too large for the output data buffer
0x8835 - error reading STRING - error writing current string len
0x8836 - error reading STRING - error writing max. string len
0x8837 - error reading STRING - error writing string to WinAC

0x8841 - error reading TIME - prefix 'T#' is missing
0x8842 - error reading TIME - [MS] value
0x8843 - error reading TIME - [S] value
0x8844 - error reading TIME - [MIN] value
0x8845 - error reading TIME - [H] value
0x8846 - error reading TIME - [D] value
0x8847 - error reading TIME - range exceed
0x8848 - error reading TIME - writing value to WinAC

0x8851 - error reading TIME_OF_DAY - prefix 'TOD#' is missing
0x8852 - error reading TIME_OF_DAY - writing value to WinAC

0x8861 - error reading DATE - prefix 'D#' is missing
0x8862 - error reading DATE - range year exceed
0x8863 - error reading DATE - range month exceed
0x8864 - error reading DATE - range day exceed
0x8865 - error reading DATE - range exceed: computing seconds
0x8866 - error reading DATE - writing value to WinAC

0x8871 - error reading DATE_AND_TIME - prefix 'DT#' is missing
0x8872 - error reading DATE_AND_TIME - writing value to WinAC
0x8873 - error reading DATE_AND_TIME - [MS] value
0x8874 - error reading DATE_AND_TIME - [S] value
0x8875 - error reading DATE_AND_TIME - [MIN] value
0x8876 - error reading DATE_AND_TIME - [H] value
0x8877 - error reading DATE_AND_TIME - [DAY] value
0x8878 - error reading DATE_AND_TIME - [MON] value
0x8879 - error reading DATE_AND_TIME - [Y] value
0x887A - error reading DATE_AND_TIME - computing weekday

Other errors
0x8901 - write not implemented in reader classes
0x8902 - undefined return value

Errors file handling
0x8A01 - error deleting file
0x8A02 - error copying file
0x8A03 - error moving file
0x8A04 - internal error - exception catched

0x8A11 - error retrieving free disk space

 1

WinAC FileServer
V 1.2.3, Entry ID: 55422031 49

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

0x8A12 - error retrieving free disk space
0x8A13 - error creating file
0x8A14 - error get file size
0x8A15 - error get file time
0x8A16 - error converting file time
0x8A17 - error get file attributes
0x8A18 - internal error - exception catched

Errors generated in STEP7 FBs
0x9D01 - false file ID given
0x9D02 - no command selected (no command flag set)
0x9D03 - To much commands. only one comand on request is allowed.

 8 Related Literature

50
WinAC FileServer

V 1.2.3, Entry ID: 55422031

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

8 Related Literature
8.1 Bibliography

This list is not complete and only represents a selection of relevant literature.
Table 8-1

 Subject Title

/1/ STEP7 Automation with STEP7 in STL and SCL
Hans Berger
Publisher: Vch Pub
ISBN-10 3895783412
ISBN-13 9783895783418

/2/ WinAC Windows Automation Center RTX – WinAC RTX 2010
Operating Instructions

/3/

8.2 Internet Link Specifications

This list is not complete and only represents a selection of relevant information.
Table 8-2

 Subject Title

\1\ Reference to the
entry

http://support.automation.siemens.com/WW/view/en/EntryID

\2\ Siemens I IA/DT
Customer Support

http://support.automation.siemens.com

\3\ WinAC Operating
Instructions

http://support.automation.siemens.com/WW/view/en/43715176

\4\

http://support.automation.siemens.com/WW/view/en/EntryID
http://support.automation.siemens.com/
http://support.automation.siemens.com/WW/view/en/43715176

 9 History

WinAC FileServer
V 1.2.3, Entry ID: 55422031 51

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

9 History

Table 9-1 Version History

Version Date Modifications

V1.0.0 02.02.11 First version
V 1.1.0 14.03.11 - File handling FBs added to documentation

- New function ‘repeat counter’ for reading /
 writing CSV files

V1.2.0 26.09.11 - New Layout for standard applications
- Description of the Step7 example project
- new output “DONE” for all function blocks
- Reading Bool value accepts “0”/”1”, too
- Description for installation under Windows XP and
Windows 7
- Time charts for REQ, BUSY, DONE and ERROR
- Additional information to INI file format
- Note: data type ANY and POINTER not supported
- Note: XML file format is fixed
- RepeatCounter in FB description and use case chapter
- XML example “array of struct”

V1.2.3 01.03.12 - TIA Portal V11 example added
- Extension of tool “Config DB Creator” for incorporation
 with TIA portal
- Increase of internal quantities (2.000 items 4.000)

	Warranty and Liability
	Table of Contents
	1 Automation Task
	1.1 Overview
	1.1 Needed knowledge
	1.2 Required Hardware and Software Components

	2 Overview
	2.1 Functional range
	2.2 Version of the driver

	3 Driver supported functionality
	3.1 General overview
	3.2 Auxiliary functions for file handling
	3.3 Storing information about data block’s structure
	3.4 Tool for creating configuration data block (Config DB Creator)
	3.4.1 Usage of ConfigDBCreator with Step7 Classic (V5.5)
	3.4.2 Using Step7 V11 (TIA-Portal)

	3.5 Supported File Format
	3.5.1 Binary file
	3.5.2 CSV – Comma Separated Values
	3.5.3 ASCII – American Standards Committee for Information Interchange
	3.5.4 XML - Extensible Markup Language
	1.1.1 INI – Windows initialization file

	3.6 Supported Step7 data types
	3.6.1 Basic types
	3.6.2 Structured data types

	4 WinAC function blocks (FB)
	4.1 FBFileInit
	4.2 FBFileOpen
	4.2.1 Relationship between REQ, BUSY, DONE and ERROR

	4.3 FBFileWrite
	4.4 FBFileRead
	4.5 FBFileHandling
	4.6 FBFileGetStat

	5 Installation
	5.1 Quick-start
	5.2 Installation WinAC driver on runtime system
	5.3 Installation WinAC driver on engineering system with Step7 classic
	5.4 Installation WinAC driver on engineering system with Step7 V11 (TIA-Portal)

	6 Use Cases of the Application
	6.1 Provided Step7 Classic example project
	6.2 Provided TIA portal example project (V11)
	6.3 Process measure data block with CSV
	6.4 Access network drives

	7 Error Codes
	7.1 Error codes of WinAC ODK
	7.2 Special error codes of the WinAC File Server

	1 Related Literature
	8.1 Bibliography
	8.2 Internet Link Specifications

	9 History

